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Collective dynamics in liquid lead. II. Mode contributions to time correlation functions
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Mode contributions of different collective excitations to the density-density time correlation function in
liquid lead are studied within the nine-variable approach of generalized collective modes. It is shown, that a
kinetic relaxing mode, caused by slow density fluctuations, defines almost completely the shape of density-
density time correlation function for wave numbers close to the main peak position of the static structure factor.
The physical meaning of this mode is discussed.
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Collective dynamics in pure and complex liquids is us
ally studied by means of an analysis of time correlation fu
tions. As an example, the density-density time correlat
function Fnn(k,t), obtained in an analytical theory or i
computer experiment, can be used for interpretation of
perimental dynamical structure factorS(k,v), which is, in
fact, the spectral function ofFnn(k,t) with k and v being
wave number and frequency, respectively. It is obvious t
any time correlation function, obtained in molecular dyna
ics ~MD! simulations, contains already in its shape the c
tributions of all the collective excitations typical for the liq
uid considered. The simplest picture of different mo
contributions to the time correlation functions can be o
tained within the hydrodynamic treatment@1,2# when values
of k andv are small enough~the hydrodynamic region!. In
this case for a simple liquid one has three main contributi
to the density-density time correlation functionFnn(k,t),
namely,

Fnn
h ~k,t !

Fnn
h ~k,0!

5
g21

g
e2DTk2t1

1

g Fcos$cskt%

1
~3G2b!k

cs
sin$cskt%Ge2Gk2t, ~1!

wherecs , G, DT , g, andb are the adiabatic sound velocit
sound attenuation coefficient, thermal diffusivity, ratio
specific heats, and a constant dependent on thermodyn
parameters, respectively. One can easily distinguish the
tribution to Fnn(k,t) from the purely relaxing thermodiffu
sive modedT(k)5DTk2, and two oscillating contributions
~symmetric and asymmetric ones! from the propagating
sound excitationszs

6(k)5Gk26 icsk. The asymmetric term
in Eq. ~1! has the leading order;k and, because of asym
metry with respect tot, does not contribute to the static valu
Fnn(k,0). Thus, in the hydrodynamic region the collecti
dynamics of a pure liquid is well described by the set
three hydrodynamic@see Eq. ~1!# collective excitations,
which correspond to the most slow time-dependent proce
in small-(k,v) region. Note that from the point of view o
several microscopic time scales the expression~1! means
also, that any nonhydrodynamic collective modes existing
a liquid do not contribute sufficiently to the density-dens
time correlation function in the hydrodynamic region~such
contributions should be at least higher order in magnitu
thank).
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Beyond the hydrodynamic region the short-time proces
become more important in liquid dynamics. Kinetic colle
tive modes~relaxing and propagating ones! begin to contrib-
ute sufficiently to all time correlation functions. Therefor
the simple expression~1! cannot be applied for the study o
dynamical properties of liquids as well as for correct estim
tion of collective mode spectrum. As examples of kine
excitations are known in the literature, we can mention op
like excitations in ionic liquids, so-called ‘‘fast sound’’ an
‘‘slow sound’’ modes in binary mixtures, and shear waves
transverse dynamics of liquids. All these kinetic propagat
collective modes cannot be described within the stand
hydrodynamic treatment.

One of the most efficient methods for the study of colle
tive dynamics of liquids in a wide range ofk and v is the
approach of generalized collective modes~GCM! @3,4#. This
method is based on the concept of generalized collective
citations and allows one, in particular, to derive more gene
expression for the functionFnn(k,t), which contains already
the contributions from the kinetic collective excitations@5#.
In our recent study of microscopic dynamics in liquid Pb@6#
we reported the results obtained for spectra of general
collective excitations in liquid lead within the nine-variab
approximation of GCM approach at two temperatures. B
yond the hydrodynamic region three pairs of kinetic prop
gating modes were found in addition to the generaliz
sound modes. It was shown that two of them describe
propagation of heat waves. We found also one purely re
ing kinetic mode with the damping coefficient being th
smallest one in the region of intermediate wave numbe
This implied a strong effect of this relaxing mode onto t
density-density time correlation function for wave numberk
being in the range of the main maximum of the static str
ture factorS(k). In order to verify the last statement a mo
detailed numerical and analytical studies of the origin of
kinetic relaxing mode and the mode contributions to dens
density time correlation function have to be performed. R
cently, similar studies have been done for longitudinal d
namics in liquid bismuth@7,5# as well as for the transvers
dynamics in several binary liquids@8#. To our knowledge the
results for the separated mode contributions, which inclu
the data for kinetic collective modes, were reported in th
papers for the first time.

The goal of this study is to investigate the mode con
butions from the generalized hydrodynamic and kinetic c
©2001 The American Physical Society02-1
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lective excitations to the density-density time correlati
function of liquid lead. We focus special attention on the ro
of relaxing kinetic collective modes and discuss this probl
in more detail. In our study we use the results for generali
collective excitations, obtained in@6# for both thermody-
namic points considered.

Within the Nv-variable approximation of the GCM ap
proach the solutions for time correlation functions could
written ~see, e.g.,@5#! in an analytical form via the eigenva
ues and eigenvectors of the generalized hydrodynamic op
tor:

Fi j ~k,t !5 (
a51

Nr

Ai j
a~k!e2da(k)t1 (

a51

Np

$Bi j
a~k!cos@va~k!t#

1Ci j
a~k!sin@va~k!t#%e2sa(k)t, ~2!

where the amplitudesAi j
a (k), Bi j

a (k) andCi j
a (k) are the real

functions of wave number and are easily expressed
eigenvectors associated with relaxingda(k) or propagating
za(k)5sa(k)6 iva(k) eigenvalues. Expression~2! is a gen-
eralization of hydrodynamic solution~1! onto the case ofNr
relaxing andNp pairs of propagating collective modes. B
taking Fourier transform of Eq.~2! one obtains the expres
sion for a spectral functionF̃ i j (k,v) with the separated
mode contributions. It is seen from Eq.~2! that F̃ i j (k,v) will
contain the contributions fromNr central Lorentzians, 2Np
noncentral Lorentzians~symmetric contributions! at frequen-
cies6va , and 2Np nonLorentzian corrections~asymmetric
contributions!, respectively.

In Figs. 1~a!–1~c! the leading mode contributions to th
function Fnn(k,t), calculated for liquid lead at the temper
ture of Th51170 K ~see@6#!, are shown for three values o
k. These results are obtained on the basis of our expres
~2!. By solid lines the molecular dynamics~MD!-derived
functions Fnn(k,t) are shown. Dashed lines correspond
the GCM functions~2! and almost coincide with MD func
tions, that means very good quality of the nine-variable
proximation, used in our calculations. Note that the GC
approach does not require any adjustable or fitting par
eters. Dotted lines show the total contribution from the g
eralized sound excitationsz2(k), i.e., the sum of symmetric
and asymmetric terms associated with the sound mo
Dash-dotted lines correspond to the heat excitations: in
the propagation gap for the heat waves, i.e., fork,kH ~see
@6#!, this line represents the contribution, caused by the th
modiffusive relaxing moded1(k), while for k.kH it gives
the total contribution from the heat wavesz1(k) ~the sum of
symmetric and asymmetric terms!. Purely relaxing mode
d2(k) causes the contributions shown by two-dash lines. I
well seen in Fig. 1~a!, that in complete agreement with pre
dictions of the hydrodynamic theory@1,2#, the shape of
density-density time correlation function for the smallesk
value, considered in our study, is almost completely de
mined by the contributions from the hydrodynamic exci
tions@the pair of propagating sound excitationsz2(k) and the
thermodiffusive moded1(k)#. For k values slightly beyond
the propagation gap (k.kH) the heat waves cause rath
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FIG. 1. Separated mode contributions to the density-den
time correlation functionFnn(k,t) for three-k values at Th

51170 K. The MD-derived function and the result of nine-variab
GCM study are shown by solid and dashed lines. Mode contri
tions from the low-frequency kinetic heat wavesz1(k), the sound
excitationsz2(k), and the kinetic relaxing moded2(k) are plotted
by dash-dotted, dotted, and two-dash lines, respectively. For
smallestk value the contribution from the thermodiffusive mod
d1(k) is shown by dash-dotted line. Time scale isth52.3935 ps.
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BRIEF REPORTS PHYSICAL REVIEW E 64 032202
small negative contribution, while the shape of functi
Fnn(k,t) is formed mainly by the sound excitationsz2(k)
and the relaxing kinetic moded2(k) in comparable amounts
Whenk increases further and gets closer to the main pea
static structure factork;kp , the contributions of the low-
frequency heat waves and the sound excitations bec
comparable and much smaller than the term associated
the kinetic relaxing moded2(k), so that the long-time tail of
Fnn(k,t) in the regionk;kp is completely defined by the
kinetic relaxing moded2(k). Similar behavior was observe
as well for the lower temperatureTl5623 K.

The relaxing kinetic moded2(k) is well reproduced
within the viscoelastic subset of dynamical variab
A(5)(k,t) @see Eq.~23! in @6##. Hence, its origin is mainly
defined by viscoelastic processes. This is in contrast w
hydrodynamic behavior~1!, where the relaxing contribution
to density-density time correlation function is only due
thermodiffusive processes. To study the origin of relax
moded2(k) in more detail let us consider the simplest ca
of dynamics when only one dynamic variableA(1)

5$n(k,t)%, namely, the particles’ densityn(k,t) is taken into
account. This gives immediately the solution for the uniq
collective moded0(k), which has very simple form:

d0~k!5tnn
21~k!.

The quantitytnn(k) was defined in@6# and is the generalized
correlation time, associated with the density-density ti
correlation function~see Eq.~14! in @6#!. In Fig. 2 we show
the results for two eigenvaluesd0(k) and d2(k), obtained
within the one-~line with triangles! and nine-variable~closed
boxes! approximations of GCM approach atTl5623 K and
Th51170 K. In the low-temperature state a quantitat
agreement between two eigenvalues fork;kp is a striking
feature. This implies that at low temperatures the slow d
sity fluctuations fork values being in the region of the ma
peak’s position~what corresponds in fact to the short-ran
fluctuations with the average interparticle distance^a&, kp
'2p/^a&) are well separated in time~see Fig. 6 in@6#! from
the thermal processes as well as from the fast density fl
tuations, which are responsible for sound propagation in
region, anddetermine almost completelythe shape of the
density-density time correlation function. Hence, one c
cludes that the well-known de Gennes slowing the den
fluctuations@9# can be directly associated with the relaxin
kinetic moded2(k).

For the higher temperature the quantitative agreement
tween the results, found ford2(k) andd0(k), is not so per-
fect due to stronger coupling with the thermal fluctuatio
found in@6#. However, the contribution from the moded2(k)
to Fnn(k,0) is still dominant whenk is close tokp @see, e.g.,
Fig. 1~c! for the wave numberk51.6809 Å21#. In particu-
lar, such a specific behavior can explain why the mo
coupling theory of freezing was so successful by treating
the density fluctuations nearby the region of the main pea
static structure factor and completely ignoring the therm
properties.

Within the simplified one-variable theory one gets the e
pression for the density-density time correlation functi
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Fnn(k,t) in the following single-exponential form:

Fnn
1 ~k,t !5Gnn

1 ~k!exp$2d0~k!t%[S~k!exp$2t/tnn~k!%.
~3!

Thus, within such a treatment the functiontnn(k) gives in
fact the estimation for some specific time of relaxatio
which, in particular, fork5kp has a meaning of the particle’
lifetime in the cage of nearest neighbors. Note also that
k;kp the kinetic relaxing moded2(k) can be directly con-
nected with so-called cage diffusion@10#. Thus, one can cal
this mode as thestructural relaxation mode.

In the hydrodynamic range the damping coefficient of t
moded2(k) tends to nonzero value, and its contribution
the density-density time correlation functionFnn(k,t) be-
comes negligible. However, we point out that the role
relaxing kinetic moded2(k) increases rapidly whenk be-
comes larger. Our recent results@7#, obtained for liquid me-
tallic Cs and a semimetallic liquid Bi, show obviously, th
beyond the small-k region the relaxing moded2(k) is the
lowest one and this mode makes the leading contribution
the shape of density-density time correlation function for
termediate and large wave numbers in complete agreem
with the results found in this study for liquid Pb. Note th
the normalized mode amplitude, describing the contribut
from d2(k) to Fnn(k,t), can even be larger than unity, whil
the sound excitations atk;kp contribute to the shape o
density-density time correlation function with the negati

FIG. 2. Relaxing kinetic moded2(k) ~symbols! obtained in the
nine-variable approximation for the basis setA(9) at the tempera-
tures:~a! Tl5623 K, and~b! Th51170 K. The one-variable relax
ing moded0(k) is shown by spline-interpolated dashed line wi
triangles.
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BRIEF REPORTS PHYSICAL REVIEW E 64 032202
sign,Bnn
2 (k'kp),0 @compare the contributions fromd2(k)

and z2(k) at t50 in Fig. 1~c!#. For both temperatures,Tl

5623 K andTh51170 K, we obtained the negative sym
metric amplitudes for sound excitations withk'kp , al-
though for the low-temperature state they were extrem
small.

Negative sign of amplitudes from sound excitations in
region of wave numbers close to main peak position ofS(k)
was found previously for a liquid Ar in Ref.@11#, where the
fitting procedure for dynamical structure factor to the thre
Lorentzian expression was used by the authors. Later, u
the ‘‘damped harmonic oscillator’’ model~DHO! de Schep-
per and co-workers@12# explained the negative sign of soun
amplitudes for the case of liquid He. The DHO model
based on the treatment of just two dynamical variab
$n(k,t),J(k,t)%. However, as it is shown above, the relaxin
kinetic moded2(k) reflects the most slow density fluctua
tions, described well in the regionk'kp even by the dynam-
ics of single variablen(k,t).
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Using the three-variable basis set$n(k,t),J(k,t),J̇(k,t)%
and assuming that this set would be more appropriate for
description both the relaxing eigenvalued(k)'d2(k) and
the propagating sound modez(k)'z2(k), we derived an
analytical expression for density-density time correlati
function and found

Fnn
3 ~k,t !

Fnn
3 ~k,0!

5Ānn~k!e2d(k)t1@B̄nn~k!cos$v~k!t%

1C̄nn~k!sin$v~k!t%#e2s(k)t, ~4!

with the normalized amplitudes

Ānn~k!5
s2~k!1v2~k!2^v̄k

2&

@d~k!2s~k!#21v2~k!
,

B̄nn~k!5
d~k!@d~k!22s~k!#1^v̄k

2&

@d~k!2s~k!#21v2~k!
,

C̄nn~k!5
d2~k!s~k!1d~k!@v2~k!2s2~k!#2^v̄k

2&@d~k!2s~k!#

~@d~k!2s~k!#21v2~k!!v~k!
, ~5!
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where the quantitŷv̄k
2& denotes the normalized second ord

frequency moment ofS(k,v). It is seen that depending o
the ratio betweend(k) and the damping coefficients(k)
5Rez(k) one can obtain either positive or negative amp
tudes of the symmetric contributionB̄nn(k). In particular,
this explains why the normalized amplitudeĀnn(k) can be
bigger than unity atk'kp . It is also seen from the expres
sion for B̄nn(k), that for strongly overdamped sound excit
tions, whens(k)@d(k), and small values of second fre
quency moment̂ v̄k

2& ~heavy atoms and low temperatures!,

the amplitudeB̄nn(k) will be negative. Thus, in this case on
obtains within three-variable model the negative amplitu
of sound contribution to the density-density time correlat
function or dynamic structure factorS(k,v).

We conclude with the main results of this study:
~i! The kinetic relaxing moded2(k) makes the leading
r

-

s

contribution to the shape of density-density time correlat
function in the region of wave numbers close to the posit
of main peakk5kp of the static structure factorS(k). This
kinetic relaxing mode is caused by slow density fluctuatio
and is well separated from all the other collective excitatio
whenk;kp ;

~ii ! In the wide range of wave numbersk the low-
frequency heat waves do not contribute sufficiently to
density-density time correlation function;

~iii ! The negative amplitudes, describing the contributi
of sound excitations to the functionFnn(k,t) in the region
k'kp , can be understood within the standard three-varia
viscoelastic model.
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