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Collective dynamics in liquid lead. 1l. Mode contributions to time correlation functions
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Mode contributions of different collective excitations to the density-density time correlation function in
liquid lead are studied within the nine-variable approach of generalized collective modes. It is shown, that a
kinetic relaxing mode, caused by slow density fluctuations, defines almost completely the shape of density-
density time correlation function for wave numbers close to the main peak position of the static structure factor.
The physical meaning of this mode is discussed.
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Collective dynamics in pure and complex liquids is usu- Beyond the hydrodynamic region the short-time processes
ally studied by means of an analysis of time correlation functhecome more important in liquid dynamics. Kinetic collec-
tions. As an example, the density-density time correlatiortive modes(relaxing and propagating onesegin to contrib-
function F(k,t), obtained in an analytical theory or in ute sufficiently to all time correlation functions. Therefore,
computer experiment, can be used for interpretation of exthe simple expressiofl) cannot be applied for the study of
perimental dynamical structure fact&(k,), which is, in - dynamical properties of liquids as well as for correct estima-
fact, the spectral function df,,(k,t) with k and w being  tion of collective mode spectrum. As examples of kinetic
wave number and frequency, respectively. It is obvious thagxcitations are known in the literature, we can mention optic-
any time correlation function, obtained in molecular dynam-jike excitations in ionic liquids, so-called “fast sound” and
ics (MD) simulations, contains already in its shape the con«sjow sound” modes in binary mixtures, and shear waves in
tributions of all the collective excitations typical for the lig- transverse dynamics of liquids. All these kinetic propagating
uid considered. The simplest picture of different modecollective modes cannot be described within the standard
contributions to the time correlation functions can be ob-hydrodynamic treatment.
tained within the hydrodynamic treatmdit 2] when values One of the most efficient methods for the study of collec-
of k and w are small enouglithe hydrodynamic regionin  tive dynamics of liquids in a wide range &fand w is the
this case for a simple liquid one has three main contributiongpproach of generalized collective mod&CM) [3,4]. This
to the density-density time correlation functidf,,(k,t),  method is based on the concept of generalized collective ex-
namely, citations and allows one, in particular, to derive more general

Fﬂn(k,t) y—1 expression for the functiok ,,(k,t), which contains already
e coqcgkt} the contributions from the kinetic collective excitatiofis.
Fnn(k,0) Y In our recent study of microscopic dynamics in liquid [Bth
(3T —b)k we reported the results obtained for spectra of generalized
. 2 . L . . L . .
+ ————sin{cckt} e T, (1)  collective excitations in liquid lead within the nine-variable
Cs approximation of GCM approach at two temperatures. Be-
wherecg, I', D1, ¥, andb are the adiabatic sound velocity, yond the hydrodynamic region three pairs of kinetic propa-
sound attenuation coefficient, thermal diffusivity, ratio of gating modes were found in addition to the generalized
specific heats, and a constant dependent on thermodynamgund modes. It was shown that two of them describe the
parameters, reSpeCtively. One can eaSily dIStInQUISh the Corp'ropagation of heat waves. We found also one pure|y relax-
tribution to Fn(k,t) from the purely relaxing thermodiffu- ing kinetic mode with the damping coefficient being the
sive moded(k)=D+k?, and two oscillating contributions smallest one in the region of intermediate wave numbers.
(symmetric and asymmetric onesrom the propagating This implied a strong effect of this relaxing mode onto the
sound excitationgg (k) =I'k’+ic.k. The asymmetric term density-density time correlation function for wave numbers
in Eq. (1) has the leading order k and, because of asym- being in the range of the main maximum of the static struc-
metry with respect td, does not contribute to the static value ture factorS(k). In order to verify the last statement a more
Fnn(k,0). Thus, in the hydrodynamic region the collective detailed numerical and analytical studies of the origin of the
dynamics of a pure liquid is well described by the set ofkinetic relaxing mode and the mode contributions to density-
three hydrodynamicsee Eq.(1)] collective excitations, density time correlation function have to be performed. Re-
which correspond to the most slow time-dependent processeently, similar studies have been done for longitudinal dy-
in small-(k,w) region. Note that from the point of view of namics in liquid bismuth7,5] as well as for the transverse
several microscopic time scales the expresgibnmeans dynamics in several binary liquid§]. To our knowledge the
also, that any nonhydrodynamic collective modes existing irresults for the separated mode contributions, which include
a liquid do not contribute sufficiently to the density-density the data for kinetic collective modes, were reported in these
time correlation function in the hydrodynamic regiuch  papers for the first time.
contributions should be at least higher order in magnitude The goal of this study is to investigate the mode contri-
thank). butions from the generalized hydrodynamic and kinetic col-
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lective excitations to the density-density time correlation 0.025 T T T .
function of liquid lead. We focus special attention on the role 0.02 | (@  ke0.1928K" GCM - i
of relaxing kinetic collective modes and discuss this problem

in more detail. In our study we use the results for generalized 0.015 [
collective excitations, obtained if6] for both thermody-
namic points considered.

Within the N,-variable approximation of the GCM ap-
proach the solutions for time correlation functions could be
written (see, e.g.[5]) in an analytical form via the eigenval-
ues and eigenvectors of the generalized hydrodynamic opere -0.005
tor:

0.01

0.005

Fanfkit)

-0.01
Nr Np -0.015 1 1 1 1
Fij(k)= 2> Af(k)e %Mt > B (k)cog w,(K)t] 0 1 2 3 4 5
a=1 a=1 .
t (reduced units)
+CH(K)siM w,(K)t]te 7o, 2
where the amplitudea? (k), B (k) andCZ(k) are the real 009 ' I I © MD ——
functions of wave number and are egsily expressed Vvic 003 (b)  k=0.6679A" GoM i
eigenvectors associated with relaxidg(k) or propagating 0.025 1
z,(k)=0,(k) Tiw,(k) eigenvalues. Expressid8) is a gen- 0.02 | .
eralization of hydrodynamic solutiofi) onto the case of, = 0015 ]
relaxing andN, pairs of propagating collective modes. By S
taking Fourier transform of Eq2) one obtains the expres- w  0.01 T
sion for a spectral functi0r1~:ij(k,w) with the separated 0.005 ]
mode contributions. It is seen from E®) thathZij(k,w) will or =
contain the contributions frorhl, central Lorentzians, 4, -0.005 |- i
noncentral Lorentzian@ymmetric contributionsat frequen- 0.01 . . . . .
cies* w,, and N, nonLorentzian correction@symmetric o 0.1 0.0 0.3 0.4 0.5 0.6
contributions, respectively. o t (reduced units)
In Figs. X@—1(c) the leading mode contributions to the
function F,4(k,t), calculated for liquid lead at the tempera- 0.45
ture of T,=1170 K(see[6]), are shown for three values of ) T T —
k. These results are obtained on the basis of our expressio 04 K ©)  k=1.6809A" GCM ------- T
(2). By solid lines the molecular dynamia#D)-derived 0.35 2
functions F,,(k,t) are shown. Dashed lines correspond to 03 F °
the GCM functions(2) and almost coincide with MD func- 425 |
tions, that means very good quality of the nine-variable ap-2 o2 |
proximation, used in our calculations. Note that the GCM £ '
approach does not require any adjustable or fitting param- %12 [
eters. Dotted lines show the total contribution from the gen- 01
eralized sound excitatiors(k), i.e., the sum of symmetric 0.05 -
and asymmetric terms associated with the sound modes o
Dash-dotted lines correspond to the heat excitations: inside . R T T T T T S T
the propagation gap for the heat waves, i.e.,Keark, (see "0 005 0.1 0.15 0.2 0.25 0.3 0.35 0.4 045 05
[6]), this line represents the contribution, caused by the ther- t (reduced units)

modiffusive relaxing model,(k), while for k>ky it gives
the total contribution from the heat wavegk) (the sum of
symmetric and asymmetric termsPurely relaxing mode

da(k) causes t_he Contribut_ions shown by two-dash Ii_nes. Itis FIG. 1. Separated mode contributions to the density-density
well seen in Fig. (&), that in complete agreement with pre- e correlation functionF,(k.t) for threek values atT,
dictions of the hydrodynamic theorfl,2], the shape of _1170 K.The MD-derived function and the result of nine-variable
density-density time correlation function for the smallkst gcm study are shown by solid and dashed lines. Mode contribu-
value, considered in our study, is almost completely detertions from the low-frequency kinetic heat wavegk), the sound
mined by the contributions from the hydrodynamic excita-excitationsz,(k), and the kinetic relaxing mode,(k) are plotted
tions[the pair of propagating sound excitatianp¢k) and the by dash-dotted, dotted, and two-dash lines, respectively. For the
thermodiffusive model,(k)]. For k values slightly beyond smallestk value the contribution from the thermodiffusive mode
the propagation gapk&ky) the heat waves cause rather d,(k) is shown by dash-dotted line. Time scalerjs=2.3935 ps.
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small negative contribution, while the shape of function T ' 29 w
Fan(k,t) is formed mainly by the sound excitatiorzs(k) 3l " Al —— |
and the relaxing kinetic modsg, (k) in comparable amounts. .

Whenk increases further and gets closer to the main peak of = "

static structure factok~k,, the contributions of the low- "

frequency heat waves and the sound excitations becom 2
comparable and much smaller than the term associated witl

the kinetic relaxing modd,(k), so that the long-time tail of
Fnn(k,t) in the regionk~k, is completely defined by the 1k
kinetic relaxing model, (k). Similar behavior was observed 623K
as well for the lower temperatuig =623 K.

The relaxing kinetic moded,(k) is well reproduced
within the viscoelastic subset of dynamical variables
AB)(k,t) [see Eq.(23) in [6]]. Hence, its origin is mainly
defined by viscoelastic processes. This is in contrast with -
hydrodynamic behaviofl), where the relaxing contribution
to density-density time correlation function is only due to
thermodiffusive processes. To study the origin of relaxing
moded,(k) in more detail let us consider the simplest case 4 L
of dynamics when only one dynamic variabla®
={n(k,t)}, namely, the particles’ density(k,t) is taken into
account. This gives immediately the solution for the unique 2
collective modedy(k), which has very simple form:

daofk) (ps™)

do(K) = 7 (K). 0 0.5 1 15 2 25 3
. - . . k (&)

The quantityr,,,(k) was defined if6] and is the generalized
correlation time, associated with the density-density time FIG. 2. Relaxing kinetic modd,(k) (symbolg obtained in the
correlation function'see Eq(14) in [6]). In Fig. 2 we show nine-variable approximation for the basis #€P) at the tempera-
the results for two eigenvaluedy(k) and d,(k), obtained tures:(a) T,=623 K, and(b) T,=1170 K. The one-variable relax-
within the one<line with triangle$ and nine-variabléclosed  ing modedy(k) is shown by spline-interpolated dashed line with
boxe$ approximations of GCM approach &f=623 K and triangles.
Tp,=1170 K. In the low-temperature state a quantitativeF
agreement between two eigenvalues Kork,, is a striking
feature. This implies that at low temperatures the slow den- F (k,t)=G! (k)exp{—dq(k)t}=S(k)exp{ —t/7yn(K)}.
sity fluctuations fork values being in the region of the main (©)]
peak’s position(what corresponds in fact to the short-range
fluctuations with the average interparticle distadeg, ki
~2/(a)) are well separated in timésee Fig. 6 if6]) from

an(k,t) in the following single-exponential form:

Thus, within such a treatment the functien,(k) gives in
fact the estimation for some specific time of relaxation,
which, in particular, fok=k, has a meaning of the particle’s

. hich ile d SO hﬁl’fetime in the cage of nearest neighbors. Note also that for
tuations, which are responsible for sound propagation in thig k, the kinetic relaxing model,(k) can be directly con-

region, anddetermine almost completethe shape of the ecteq with so-called cage diffusigm0]. Thus, one can call
density-density time correlation function. Hence, one coNnshis mode as thstructural relaxation mode

cludes that the well-known de Gennes slowing the density | the hydrodynamic range the damping coefficient of the
fluctuations[9] can be directly associated with the relaxing moded,(k) tends to nonzero value, and its contribution to
kinetic moded,(K). the density-density time correlation functidf,,(k,t) be-
For the higher temperature the quantitative agreement b&omes negligible. However, we point out that the role of
tween the results, found faf,(k) anddy(k), is not so per- relaxing kinetic moded,(k) increases rapidly whek be-
fect due to stronger coupling with the thermal fluctuations,comes larger. Our recent resuld, obtained for liquid me-
found in[6]. However, the contribution from the modeg(k) tallic Cs and a semimetallic liquid Bi, show obviously, that
to F,,(k,0) is still dominant wherk is close tok, [see, e.g., beyond the smalk region the relaxing mode,(k) is the
Fig. 1(c) for the wave numbek=1.6809 A~1]. In particu- lowest one and this mode makes the leading contribution to
lar, such a specific behavior can explain why the modethe shape of density-density time correlation function for in-
coupling theory of freezing was so successful by treating justermediate and large wave numbers in complete agreement
the density fluctuations nearby the region of the main peak oivith the results found in this study for liquid Pb. Note that
static structure factor and completely ignoring the thermathe normalized mode amplitude, describing the contribution
properties. from d,(k) to F,,(k,t), can even be larger than unity, while
Within the simplified one-variable theory one gets the ex-the sound excitations &~k contribute to the shape of
pression for the density-density time correlation functiondensity-density time correlation function with the negative
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sign, Bi,(k~k,) <0 [compare the contributions frouty(k) Using the three-variable basis get(k,t),J(k,t),J(k,t)}

and z,(k) att=0 in Fig. 1c)]. For both temperatureg; and assuming that this set would be more appropriate for the
=623 K andT,=1170 K, we obtained the negative sym- description both the relaxing eigenvalugk)~d,(k) and
metric amplitudes for sound excitations witt~k,, al- the propagating sound modgk)~z,(k), we derived an
though for the low-temperature state they were extremelynalytical expression for density-density time correlation
small. function and found

Negative sign of amplitudes from sound excitations in the

3
region of wave numbers close to main peak positios(d) M=Knn(k)e‘d(k)t+[gnn(k)cos{w(k)t}

was found previously for a liquid Ar in Ref11], where the F3.(k,0)

fitting procedure for dynamical structure factor to the three- _

Lorentzian expression was used by the authors. Later, using +Cpp(K)sinfw(k)t}Je™ 70, (4)

the “damped harmonic oscillator” modéDHO) de Schep-
per and co-workerfl2] explained the negative sign of sound
amplitudes for the case of liquid He. The DHO model is _ o?(K) + 0?(k) — (w?)
based on the treatment of just two dynamical variables Ann(k) = PRI
{n(k,t),J(k,t)}. However, as it is shown above, the relaxing [d(k) —a(k)]"+ (k)
kinetic moded,(k) reflects the most slow density fluctua-
tions, described well in the regida~k, even by the dynam-
ics of single variablen(k,t).

with the normalized amplitudes

~d([d(K) ~20(K) ]+ (wp)
[d(k) — (k) ]+ w(k)

nn

d?(K) (k) +d(K) [ ?(k) — o?(K) ]~ (@) [d(K) — o (k)]

.
Conlk) ([d(K) — (k) ]2+ w?(K)) (k)

®

where the quantityw?) denotes the normalized second ordercontribution to the shape of density-density time correlation
frequency moment 08(k, ). It is seen that depending on function in the region of wave numbers close to the position
the ratio betweerd(k) and the damping coefficient(k) of main peakk=k, of the static structure factdd(k). This

—Rez(k) one can obtain either positive or negative amp"_klnet_lc relaxing mode is caused by slow dens[ty fluctyat!ons
, = i and is well separated from all the other collective excitations
tudes of the symmetric contributioB,,,(k). In particular,

o whenk~Kk,;
this explains why the normalized amplitude ,(k) can be (i) In the wide range of wave numbells the low-
bigger than unity ak~k,. It is also seen from the expres- frequency heat waves do not contribute sufficiently to the
sion for B,,,(k), that for strongly overdamped sound excita- density-density time correlation function;
tions, whena(k)>d(k), and small values of second fre- (i) The negative amplitudes, describing the contribution

quency momen(aﬁ) (heavy atoms and low temperatuxes of sound excitations to the functidf,,(k,t) in the region

the amplitudegnn(k) will be negative. Thus, in this case one k~k,, can be understood within the standard three-variable

obtains within three-variable model the negative amplitudeé’ iscoelastic model.

of sound contribution to the density-density time correlation We are grateful to I.M. de Schepper for pointing our at-

function or dynamic structure fact@&(k, ). tention to the results on DHO model. I.M. is grateful for the
We conclude with the main results of this study: support of the Fonds fuForderung der wissenschaftlichen
(i) The kinetic relaxing model,(k) makes the leading Forschung under Project No. P12422 TPH.

[1] C. Cohenet al, Phys. Chem. Lig2, 213(1972. [6] T. Bryk and |. Mryglod, Phys. Rev. B3, 051202(2001).

[2] N. H. March and M. P. TosiAtomic Dynamics in Liquids [7] T. Bryk et al, J. Phys.: Condens. Matté&p, 3543(2000.
(Macmillan Press, London, 19Y.6 [8] T. Bryk et al, J. Phys.: Condens. Matté®, 6063(2000.

[3] I. M. de Scheppeet al, Phys. Rev. A38, 271(1988. [9] P. G. deGennes, Physi¢Amsterdam 25, 828 (1959.

[4] 1. M. Mryglod et al, Mol. Phys.84, 235(1995. [10] E. G. D. Cohen, Physica A94, 229 (1993.

[5] T. Bryk and I. Mryglod, J. Phys.: Condens. Mattes, 1343 [11] I. M. de Scheppeet al, Phys. Rev. Lett50, 974 (1983.
(200D. [12] R. M. Crevecoeutt al, J. Low Temp. Phys105 149(1996.

032202-4



